
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Pentest-Report Obsidian Clients & UI 09.2024
Cure53, Dr.-Ing. M. Heiderich, M. Pedhapati, C. Luders, Dr. D. Bleichenbacher, Dr. N. Kobeissi

Index
Introduction

Scope

Identified Vulnerabilities

DYL-03-001 WP1: Flawed remediation of CVE-2022-36450 (Low)
DYL-03-002 WP1: Deeplink opens arbitrary URLs and leaks filenames (Low)
DYL-03-003 WP1: DoS caused by missing limits in window-opening (Medium)
DYL-03-004 WP1: URL spoofing via filtered ports (Medium)
DYL-03-005 WP1: URL spoofing via redirect to invalid protocols (Medium)
DYL-03-007 WP1: UXSS via bookmarks accepting JavaScript URI (Critical)

Miscellaneous Issues

DYL-03-006 False Positive: Outdated and vulnerable dependencies in Obsidian static (Info)
DYL-03-008 WP1: Markdown permits file://-protocol (Info)

Conclusions

Cure53, Berlin · Oct 17, 24 1/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction
“Obsidian is the private and flexible writing app that adapts to the way you think. Obsidian
stores notes on your device, so you can access them quickly, even offline. No one else can
read them, not even us. Obsidian uses open, non-proprietary files, so you're never locked
in, and can preserve your data for the long term.”

From https://obsidian.md/

This report describes the results of a security assessment of the Obsidian Client software,
with an explicit focus on the client. The project, which included a penetration test and a
dedicated source code audit, was conducted by Cure53 in September 2024.

The audit, registered as DYL-03, was requested by Dynalist Inc. in August 2024. It should
be clarified that this is not the first security-centered cooperation between Cure53 and
Obsidian. In fact, the Obsidian client itself was analyzed by Cure53 just last year, in
November 2023, during the project designated as DYL-01. This means that previous
pentests and source code audits against the Obsidian client, which revealed several
vulnerabilities, could inform this second iteration of examinations targeting the same scope.

In terms of the exact timeline and specific resources allocated to DYL-03, Cure53 has
completed the research in CW38 In order to achieve the expected coverage for this task, a
total of four days were invested. In addition, it should be noted that a team consisting of five
senior testers was formed and assigned to the preparation, execution, documentation, and
delivery of this project. Given the nature of the tasks envisioned for DYL-03, the assessment
was contained to a single work package (WP):

• WP1: Crystal-box pentests & code audits against Obsidian clients & UI

As the title of the WP indicates, the so-called crystal-box methodology was used. Cure53
was provided with invites to the Obsidian GitHub repository, links to the relevant
documentation, as well as all further means of access required to complete the tests.

The project was completed without any major issues. To facilitate a smooth transition into
the testing phase, all preparations were completed in CW37. Throughout the engagement,
communications were conducted through a private, dedicated, and shared Discord channel.
Stakeholders - including Cure53 testers and internal staff from Obsidian - were able to
participate in discussions in this space.

Cure53 did not need to ask many questions, and the quality of all project-related interactions
was consistently excellent. The continuous exchange contributed positively to the overall
results of this project. Significant roadblocks were avoided thanks to clear and careful
preparation of the scope. Cure53 provided frequent status updates on the examination and
emerging findings, but live reporting was not specifically requested for DYL-03.

Cure53, Berlin · Oct 17, 24 2/15

https://obsidian.md/
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The Cure53 team achieved very good coverage of the WP1 objectives. Of the eight security-
related discoveries, six were classified as security vulnerabilities and two were classified as
general weaknesses with lower exploitation potential. It should be noted that the list of
findings is not extensive, yet the overall results are still mixed. In particular, based on the
observed issues, it can be argued that the security standing of the Obsidian client
component has improved since the previous pentest conducted by Cure53.

This is evident from the fact that only one very serious vulnerability was spotted. The
problem, identified in the handling of bookmarks, has led to UXSS (see DYL-03-007).
Positive developments can also be seen in the fact that the findings from the last project, as
well as CVEs, have mostly been resolved correctly. The only exception without successful
mitigation encompasses CVE-2022-36450, which still appears to be exploitable but can be
seen as less impactful at present. Last but not least, many additional hardening suggestions
are presented in this report. These are advised as a way to tackle various anti-patterns such
as URL spoofing and flawed deep-links. Especially the browser WebView plugin should be
further hardened to address security risks.

The following sections first describe the scope and key test parameters, as well as how the
work packages were structured and organized. Next, all findings are discussed in grouped
vulnerability and miscellaneous categories. The vulnerabilities assigned to each group are
then discussed chronologically. In addition to technical descriptions, PoC and mitigation
advice is provided where applicable. The report ends with general conclusions relevant to
this September 2024 project. Based on the test team's observations and the evidence
collected, Cure53 elaborates on the overall impressions and reiterates the verdict. The final
section also includes tailored hardening recommendations for the Obsidian clients software
complex, more specifically the client component.

Cure53, Berlin · Oct 17, 24 3/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope
• Penetration tests & source code audits against Obsidian clients

◦ WP1: Crystal-box pentests & code audits against Obsidian clients & UI
▪ Obsidian sources:

• Branch:
◦ obsidian-master/

• Commit ID:
◦ 220b580d4fd4ab13250703a3efd36310d1b7f0f2

▪ Obsidian static sources:
• Branch:

◦ obsidian-static-master/
• Commit ID:

◦ fbf3d1ab4fb01047e36e0b571a5f020268137650
• Documentation:

◦ Local_dev_environment_guide.md
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Oct 17, 24 4/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, each ticket has been given a unique identifier (e.g., DYL-03-001)
to facilitate any follow-up correspondence in the future.

DYL-03-001 WP1: Flawed remediation of CVE-2022-36450 (Low)
Fix note: The issue was fixed by the Obsidian team after the audit, and the patch was
successfully verified by the Cure53 team.

While analyzing the patches applied to resolve prior CVEs, the remediation for CVE-2022-
364501 was found to be flawed. The implemented file:// scheme check assumes that the
string value of URL(url).protocol2 does not contain a colon, which is incorrect. Such
assumption leads the application to improperly accept a file:// URL as safe.

From this perspective, the project remains vulnerable to the same attack. On the plus side,
the application’s latest version prompts the user for confirmation before opening any file://
URL, which minimizes the risk associated with this attack.

Affected file:
src/app/workspace/workspace.ts

Affected code:
let handleXCallback = (params: ObsidianProtocolData, file: TFile): boolean
=> {
 if (params.hasOwnProperty('x-success')) {
 let url = params['x-success'];
[...]

let parsed = new URL(url);

 // Don't allow file protocols to be opened from x-callback-url
 if (parsed.protocol.toLowerCase() === 'file') return true;

 window.open(url);

To mitigate this issue, Cure53 recommends adding a colon to the file string (file:) in the if
statement. This approach will properly remove the risk potential associated with such cases.

1 https://nvd.nist.gov/vuln/detail/CVE-2022-36450
2 https://developer.mozilla.org/en-US/docs/Web/API/URL/protocol

Cure53, Berlin · Oct 17, 24 5/15

https://cure53.de/
https://developer.mozilla.org/en-US/docs/Web/API/URL/protocol
https://nvd.nist.gov/vuln/detail/CVE-2022-36450
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

DYL-03-002 WP1: Deeplink opens arbitrary URLs and leaks filenames (Low)
Fix note: The issue was fixed by the Obsidian team after the audit, and the patch was
successfully verified by the Cure53 team.

Cure53 discovered that the Deeplink action in obsidian://hook-get-address3 can be paired
with the ?x-success= parameter to open arbitrary website URLs, as well as to leak the
currently opened file’s name and full local path. Knowing such sensitive data can be
weaponized to force the application to edit and overwrite the file’s content.

For the attack to succeed, the victim is required to open a malicious website and accept the
browser’s prompt to open Obsidian two times. Consequently, the impact score of this flaw is
set to Low.

PoC code:
<script>
document.addEventListener('DOMContentLoaded', () => {
 const p = new URLSearchParams(location.search);
 const s = window.location;
 const n = p.get('name');
 document.body.innerHTML = `<a href="obsidian://hook-get-address?x-
success=${s}">Hook`;
 if (n) {
 const url = `obsidian://new?
content=pwned&silent=1&overwrite=1&name=${encodeURIComponent(n)}`;
 window.location.href = url;
 }
});
</script>

Ideally, no data from the user’s vault should be shared without explicit permission. This
needs to be considered against the necessity to properly display the targeted URL that is
being opened. If possible, the x-callback-url parameters functionality should be reviewed for
more robust transparency and authorization from the user’s perspective.

3 https://help.obsidian.md/Extending+Obsidian/Obsidian+URI#Integrate+with+Hook

Cure53, Berlin · Oct 17, 24 6/15

https://cure53.de/
https://help.obsidian.md/Extending+Obsidian/Obsidian+URI#Integrate+with+Hook
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

DYL-03-003 WP1: DoS caused by missing limits in window-opening (Medium)
Fix note: The issue was fixed by the Obsidian team after the audit, and the patch was
successfully verified by the Cure53 team.

During the security assessment, the observation was made that the internal WebView
implementation lacks any check or user activation before making it possible to open new
windows. Such behavior can be abused by an attacker to create a large number of tabs,
causing a Denial-of-Service of the entire application. The state remains even after restarting
the application, as it will try to load the malicious website again.

Permitting multiple windows to be open also partially defeats the purpose of the Cross-
Origin-Opener-Policy security header. This is because several XSLeaks4 attack strategies
require continuous window control.

PoC code:
<script>

while(true){window.open("https://cure53.de")}
</script>

To mitigate this issue, Cure53 advises allowing only one pop-up to be opened per user
interaction, such as a mouse click or pressing a key. This represents an industry standard
adopted by most browsers.

DYL-03-004 WP1: URL spoofing via filtered ports (Medium)
Fix note: The issue was fixed by the Obsidian team after the audit, and the patch was
successfully verified by the Cure53 team.

Investigating the security properties of the internal WebView5 implementation led to the
discovery that it is possible to spoof the URL displayed inside the address bar. This can
specifically be achieved by navigating to a filtered port.

Behaviors like this occur due to the address bar being updated before the navigation
finishes loading. Thus, the previously rendered page is being retained until the response is
received from the URL associated with navigation. The timeout necessary to display a
proper error message is considerable and not reliable.

PoC code:
<h1>Spoofed Page</h1>
<script>
location = "https://obsidian.md:100/";
</script>

4 https://xsleaks.dev/
5 https://www.electronjs.org/docs/latest/api/webview-tag

Cure53, Berlin · Oct 17, 24 7/15

https://cure53.de/
https://www.electronjs.org/docs/latest/api/webview-tag
https://xsleaks.dev/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To mitigate this issue, Cure53 recommends either updating the address bar only after
receiving the response or immediately replacing the previously displayed page with a blank
page following navigation.

DYL-03-005 WP1: URL spoofing via redirect to invalid protocols (Medium)
Fix note: The issue was fixed by the Obsidian team after the audit, and the patch was
successfully verified by the Cure53 team.

In the course of the assessment of the internal WebView, another URL spoofing exploit was
found. In this case, URLs with invalid protocols are displayed in the address bar before
completion of the loading process. This is effectively happening when the previously
rendered page is displayed. The invalid protocol scheme is fully shown, but it may be
unnoticeable to the user, as it is possible to include punctuation such as https.://.

PoC code:
<h1>Spoofed Page</h1>
<script>
location = "https.://obsidian.md/";
</script>

To mitigate this issue, Cure53 recommends changing the order of visual updates in the
application. To be precise, requests should be resolved prior to any altering of the address
bar. In this particular case, WebView should promptly display an error page, denoting that
the URL is invalid.

DYL-03-007 WP1: UXSS via bookmarks accepting JavaScript URI (Critical)
Fix note: The issue was fixed by the Obsidian team after the audit, and the patch was
successfully verified by the Cure53 team.

While investigating the internal WebView, it was noticed that the user can add any web page
URL as a so-called bookmark. Once this page is clicked on in the Bookmark menu, the URL
will be loaded automatically in the internal WebView.

Additionally, the application does not let users input custom bookmark URLs. Bookmarks
can only be created for web pages currently loaded in the WebView component. Due to the
WebView's HTTP/HTTPS restriction, the addition of bookmarks with JavaScript URIs from
the application's UI is prevented.

However, Obsidian stores bookmark details in a JSON file (.obsidian/bookmarks.json)
within the vault directory. This file is blindly trusted, allowing adversaries to modify a
bookmark's URL to a malicious JavaScript URI from here. Clicking on this modified

Cure53, Berlin · Oct 17, 24 8/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

bookmark could load and potentially run arbitrary JavaScript code within the WebView
component.

This vulnerability can be exploited easily by malicious actors who gain access to a shared
vault through Obsidian. In a shared remote vault, any changes made by any party will be
reflected for everyone. This can be exploited in both scenarios:

1. A victim sharing a remote vault with an attacker;
2. An attacker sharing a vault with the victim.

What is more, attackers can trick victims into opening untrusted folders. In both cases,
attackers can modify bookmark URLs and turn them malicious, potentially facilitating
execution of harmful code within the WebView.

If the victim, for example, opens https://cure53.de in the WebView mode and then clicks on
a malicious bookmark, the JavaScript code will be executed within the context of cure53.de's
origin. This means that the attacker could perform any actions within that website, as long as
the given item was allowed to the victim.

Similarly, this vulnerability could be exploited with other origins, including the file:// origin.
Besides manipulating data on a website, attackers could potentially steal local files.

This attack could be further simplified to include just two clicks, one to load the target
website from which the attacker wants to leak data, and the second one to execute arbitrary
JavaScript code within that website's context.

Affected file:
src/app/plugins/bookmarks/bookmarks.ts

Affected code:
else if (item.type === 'url') {

leaf.setViewState({
type: BROWSER_VIEW_TYPE,
active: true,
state: {

url: item.url,
navigate: true,

}
});

}

Cure53, Berlin · Oct 17, 24 9/15

https://cure53.de/
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Steps to reproduce:
1. Create a new vault and enable Sync & WebView features.
2. Open any URL in the WebView , click on the Add Bookmark option and save it.
3. Open the following .obsidian/bookmarks.json file file in text editor from the vault

directory.
4. Replace the file content with the following JSON:

Replaced content:
{"items":[{"type":"url","ctime":1727061371528,"url":"https://
www.google.com/","title":"Click me to load google.com"},
{"type":"url","ctime":1727061371528,"url":"javascript:alert('UXSS
window.origin: '+ window.origin +'\n\n Contents: ' +
document.body.innerHTML)","title":"Click me to alert window.origin
and also contents"},
{"type":"url","ctime":1727061371528,"url":"file:///C:/Windows/
System32/Drivers/etc/hosts","title":"Click me to load
file:///etc/hosts"}]}

5. In the Obsidian app, click on the first bookmark. This will load https://google.com.
6. Click on the second bookmark. This will pop the contents. Retrying the sequence

with the third bookmark loads a local file.

Cure53 advises utilizing an URL parser API to validate the URL scheme of the item.url
property. It needs to be ensured that only HTTP/HTTPS schemas are permitted in the
context of opening items from the Bookmark bar.

Cure53, Berlin · Oct 17, 24 10/15

https://google.com/
https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

DYL-03-006 False Positive: Outdated & vulnerable dependencies in Obsidian static (Info)
Note: The issue is a false positive, after discussing with the client the vulnerable modules
identified by npm audit are all dev dependencies only used in the build process and not
deployed/exposed to the public.

Several software packages observed during the assessment were seen as reliant on
outdated versions of components. As such, the complex was unnecessarily vulnerable to a
host of security risks.

The software packages listed below were identified as out-of-date and potentially insecure.
Notably, the version information provided is based on data collected at the time of testing.
Whether these vulnerabilities are exploitable depends entirely on how the relevant
functionality is used in the targeted application at present.

Command:
/obsidian-static-master> npm audit --omit dev

npm audit report

body-parser <1.20.3
Severity: high
body-parser vulnerable to denial of service when url encoding is enabled -
https://github.com/advisories/GHSA-qwcr-r2fm-qrc7
[...]

braces <3.0.3
Severity: high
Uncontrolled resource consumption in braces -
https://github.com/advisories/GHSA-grv7-fg5c-xmjg
[...]

ejs <3.1.10
Severity: moderate
ejs lacks certain pollution protection -
https://github.com/advisories/GHSA-ghr5-ch3p-vcr6
[...]

Cure53, Berlin · Oct 17, 24 11/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

micromatch <4.0.8
Severity: moderate
Regular Expression Denial of Service (ReDoS) in micromatch -
https://github.com/advisories/GHSA-952p-6rrq-rcjv

path-to-regexp <=0.1.9 || 4.0.0 - 6.2.2
Severity: high
path-to-regexp outputs backtracking regular expressions -
https://github.com/advisories/GHSA-9wv6-86v2-598j
[...]

postcss <8.4.31
Severity: moderate
PostCSS line return parsing error - https://github.com/advisories/GHSA-
7fh5-64p2-3v2j
[...]

pug <=3.0.2
Severity: moderate
Pug allows JavaScript code execution if an application accepts untrusted
input - https://github.com/advisories/GHSA-3965-hpx2-q597
[...]

send <0.19.0
Severity: moderate
send vulnerable to template injection that can lead to XSS -
https://github.com/advisories/GHSA-m6fv-jmcg-4jfg
[...]

ws 8.0.0 - 8.17.0
Severity: high
ws affected by a DoS when handling a request with many HTTP headers -
https://github.com/advisories/GHSA-3h5v-q93c-6h6q
[...]

11 vulnerabilities (6 moderate, 5 high)

Notably, the testing team was unable to comprehensively prove any potential impact during
the limited time frame granted for this review. As such, the wider implications remain
unknown at this point, and it is recommended that they are subject to internal research at
the earliest possible convenience for the in-house team.

Generally speaking, the provision of optimal and robust supply chain security can be quite
challenging. Often, an easy or comprehensive solution cannot be offered, while the results

Cure53, Berlin · Oct 17, 24 12/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

and efficacy of the selected protection framework can vary depending on the integrated
version of the deployed libraries.

To mitigate the existing issues as effectively as possible, Cure53 recommends updating all
affected libraries and establishing a policy to ensure that libraries remain up-to-date moving
forward. This will ensure that the premise can benefit from patches rolled out for previously
detected weaknesses across a variety of different solutions. For this purpose, NPM offers a
functionality entitled npm audit fix. Note, however, that the degree of protection may
fluctuate; up-to-date retention will typically become increasingly difficult to achieve as a
greater number of third-party libraries are deployed.

DYL-03-008 WP1: Markdown permits file://-protocol (Info)
Note: After discussing with the client, the issue was considered a feature since users are
making the choice after displaying the warning.

It was observed that the markdown feature allows the use of the file://-protocol. When this is
clicked on, a warning message is displayed. However, if the user accepts it, the file at the
specified path will be opened using shell.openPath.

Although a warning message is displayed, it cannot be excluded that a user disregards it
and proceeds. In such scenarios, a compromise would be the consequence. Since the
shell.openPath API in Electron can execute binaries, this signals potential for RCE.

To fully mitigate this risk, it is strongly recommended to block the possibility to open any files
through the app, regardless of warnings.

Cure53, Berlin · Oct 17, 24 13/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions
As signaled in the Introduction, the security posture of the Obsidian clients and UI
components appears to be improving. Comparing the results of DYL-01 and DYL-03
projects, Cure53 can assert proper dedication to fixes and hardening resolutions, which
bodes well for the future security standing of Obsidian, as long as this dedication can be
maintained at Obsidian. While eight issues were still confirmed as negatively affecting the
scope, only one Critical flaw was documented during this September 2024 investigation.

Detailing the process and findings, the assessment started with a review of the patches
applied for prior CVEs. It was found that the remediation for CVE-2022-36450 has been
done in a flawed manner (see DYL-03-001). Other CVEs were also inspected but no bypass
or side-effects were noticed. The application does not have a wide history of vulnerabilities.

Static analysis and security source code review methods were applied to properly inspect
the application’s registered Deeplinks as such functionality is a common attack surface for
thick clients. The hook-get-address presented a risk to the application, as it can be used to
leak the currently opened file’s name and full path. Such sensitive information can be
abused to overwrite files, issue DYL-03-002. The x-callback-url parameters are a point of
failure and should be reviewed, with Obsidian aiming for a more robust and transparent
implementation.

The new browser plugin implementation was carefully analyzed for common security pitfalls
of the WebViews components, with the focus on its Electron interactions. The WebView tag
configuration was inspected for security misconfigurations. The implementation neither
utilizes any custom and potentially vulnerable webpreferences configuration, nor enables
unsafe and dangerous attributes like nodeintegration or disablewebsecurity.

Multiple vulnerabilities related to the browser plugin were found, mainly due to the lack of
common security hardening protections of full-fledged browsers. For example, a DoS
vulnerability was caused by the WebView’s lack of limits for the number of permitted
windows opened by a website (DYL-03-003). This entailed loading multiple tabs and
crashing the application.

Another common browser-related vulnerability is the ability to spoof the URL address bar
and trick the user into thinking another website is loaded, even though a malicious page is
being displayed in reality. Two vulnerabilities of such type were found; they arise from the
erroneous parsing of the loaded URLs and the determinations on how they should be loaded
and displayed in the address bar. More details on these flaws can be found in DYL-03-004
and DYL-03-005.

Cure53, Berlin · Oct 17, 24 14/15

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Electron-related security anti-patterns were investigated thoroughly in the application’s
source code. For example, the executeJavaScript() function was found many times, so all of
the user-controlled objects used in this context were analyzed for potential JavaScript
injections. The application properly utilizes JSON.Stringify to escape these inputs before
executing the hardcoded JavaScript. One minor issue was noticed regarding the file protocol
URLs and their handling upon reaching dangerous sinks (see DYL-03-008).

Overall, it is apparent that a more robust security implementation is needed for the Deeplink
functionality and this realm should be reviewed in-depth. The browser WebView plugin is
also rather fragile from a security perspective, lacking common browser hardening
improvements. It is hoped that it can be more battle-tested before a proper, full release.
Apart from these observations, Cure53 concludes that most of the Electron anti-patterns
were successfully avoided in the Obsidian clients and UI project.

Cure53 would like to thank Erica Xu, Steph Ango, Shida Li, and Tony Grosinger from the
Dynalist Inc. team for their excellent project coordination, support and assistance, both
before and during this assignment.

Cure53, Berlin · Oct 17, 24 15/15

https://cure53.de/
mailto:mario@cure53.de

	Introduction
	Scope
	Identified Vulnerabilities
	DYL-03-001 WP1: Flawed remediation of CVE-2022-36450 (Low)
	DYL-03-002 WP1: Deeplink opens arbitrary URLs and leaks filenames (Low)
	DYL-03-003 WP1: DoS caused by missing limits in window-opening (Medium)
	DYL-03-004 WP1: URL spoofing via filtered ports (Medium)
	DYL-03-005 WP1: URL spoofing via redirect to invalid protocols (Medium)
	DYL-03-007 WP1: UXSS via bookmarks accepting JavaScript URI (Critical)

	Miscellaneous Issues
	DYL-03-006 False Positive: Outdated & vulnerable dependencies in Obsidian static (Info)
	DYL-03-008 WP1: Markdown permits file://-protocol (Info)

	Conclusions

